Copied to
clipboard

G = C43.15C2order 128 = 27

15th non-split extension by C43 of C2 acting faithfully

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C43.15C2, C42.64Q8, C42.345D4, C23.759C24, C4.10(C4⋊Q8), C41(C42.C2), C428C4.53C2, C429C4.41C2, (C22×C4).265C23, C22.469(C22×D4), C22.182(C22×Q8), (C2×C42).1094C22, C23.65C23.90C2, C2.C42.454C22, C2.59(C22.26C24), C2.48(C23.37C23), C2.22(C2×C4⋊Q8), (C2×C4).688(C2×D4), (C2×C4).233(C2×Q8), C2.22(C2×C42.C2), (C2×C4).675(C4○D4), (C2×C4⋊C4).562C22, C22.600(C2×C4○D4), (C2×C42.C2).30C2, SmallGroup(128,1591)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C43.15C2
C1C2C22C23C22×C4C2×C42C43 — C43.15C2
C1C23 — C43.15C2
C1C23 — C43.15C2
C1C23 — C43.15C2

Generators and relations for C43.15C2
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, ac=ca, dad-1=ac2, bc=cb, dbd-1=b-1, dcd-1=a2c >

Subgroups: 356 in 236 conjugacy classes, 132 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C42.C2, C43, C428C4, C429C4, C23.65C23, C2×C42.C2, C43.15C2
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C42.C2, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C2×C42.C2, C2×C4⋊Q8, C22.26C24, C23.37C23, C43.15C2

Smallest permutation representation of C43.15C2
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 59 51 45)(2 60 52 46)(3 57 49 47)(4 58 50 48)(5 44 62 54)(6 41 63 55)(7 42 64 56)(8 43 61 53)(9 31 23 17)(10 32 24 18)(11 29 21 19)(12 30 22 20)(13 71 27 39)(14 72 28 40)(15 69 25 37)(16 70 26 38)(33 105 98 95)(34 106 99 96)(35 107 100 93)(36 108 97 94)(65 117 125 75)(66 118 126 76)(67 119 127 73)(68 120 128 74)(77 85 115 123)(78 86 116 124)(79 87 113 121)(80 88 114 122)(81 89 103 111)(82 90 104 112)(83 91 101 109)(84 92 102 110)
(1 13 9 41)(2 14 10 42)(3 15 11 43)(4 16 12 44)(5 48 38 20)(6 45 39 17)(7 46 40 18)(8 47 37 19)(21 53 49 25)(22 54 50 26)(23 55 51 27)(24 56 52 28)(29 61 57 69)(30 62 58 70)(31 63 59 71)(32 64 60 72)(33 89 127 121)(34 90 128 122)(35 91 125 123)(36 92 126 124)(65 85 100 109)(66 86 97 110)(67 87 98 111)(68 88 99 112)(73 79 105 103)(74 80 106 104)(75 77 107 101)(76 78 108 102)(81 119 113 95)(82 120 114 96)(83 117 115 93)(84 118 116 94)
(1 77 9 101)(2 102 10 78)(3 79 11 103)(4 104 12 80)(5 97 38 66)(6 67 39 98)(7 99 40 68)(8 65 37 100)(13 105 41 73)(14 74 42 106)(15 107 43 75)(16 76 44 108)(17 109 45 85)(18 86 46 110)(19 111 47 87)(20 88 48 112)(21 81 49 113)(22 114 50 82)(23 83 51 115)(24 116 52 84)(25 93 53 117)(26 118 54 94)(27 95 55 119)(28 120 56 96)(29 89 57 121)(30 122 58 90)(31 91 59 123)(32 124 60 92)(33 63 127 71)(34 72 128 64)(35 61 125 69)(36 70 126 62)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,59,51,45)(2,60,52,46)(3,57,49,47)(4,58,50,48)(5,44,62,54)(6,41,63,55)(7,42,64,56)(8,43,61,53)(9,31,23,17)(10,32,24,18)(11,29,21,19)(12,30,22,20)(13,71,27,39)(14,72,28,40)(15,69,25,37)(16,70,26,38)(33,105,98,95)(34,106,99,96)(35,107,100,93)(36,108,97,94)(65,117,125,75)(66,118,126,76)(67,119,127,73)(68,120,128,74)(77,85,115,123)(78,86,116,124)(79,87,113,121)(80,88,114,122)(81,89,103,111)(82,90,104,112)(83,91,101,109)(84,92,102,110), (1,13,9,41)(2,14,10,42)(3,15,11,43)(4,16,12,44)(5,48,38,20)(6,45,39,17)(7,46,40,18)(8,47,37,19)(21,53,49,25)(22,54,50,26)(23,55,51,27)(24,56,52,28)(29,61,57,69)(30,62,58,70)(31,63,59,71)(32,64,60,72)(33,89,127,121)(34,90,128,122)(35,91,125,123)(36,92,126,124)(65,85,100,109)(66,86,97,110)(67,87,98,111)(68,88,99,112)(73,79,105,103)(74,80,106,104)(75,77,107,101)(76,78,108,102)(81,119,113,95)(82,120,114,96)(83,117,115,93)(84,118,116,94), (1,77,9,101)(2,102,10,78)(3,79,11,103)(4,104,12,80)(5,97,38,66)(6,67,39,98)(7,99,40,68)(8,65,37,100)(13,105,41,73)(14,74,42,106)(15,107,43,75)(16,76,44,108)(17,109,45,85)(18,86,46,110)(19,111,47,87)(20,88,48,112)(21,81,49,113)(22,114,50,82)(23,83,51,115)(24,116,52,84)(25,93,53,117)(26,118,54,94)(27,95,55,119)(28,120,56,96)(29,89,57,121)(30,122,58,90)(31,91,59,123)(32,124,60,92)(33,63,127,71)(34,72,128,64)(35,61,125,69)(36,70,126,62)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,59,51,45)(2,60,52,46)(3,57,49,47)(4,58,50,48)(5,44,62,54)(6,41,63,55)(7,42,64,56)(8,43,61,53)(9,31,23,17)(10,32,24,18)(11,29,21,19)(12,30,22,20)(13,71,27,39)(14,72,28,40)(15,69,25,37)(16,70,26,38)(33,105,98,95)(34,106,99,96)(35,107,100,93)(36,108,97,94)(65,117,125,75)(66,118,126,76)(67,119,127,73)(68,120,128,74)(77,85,115,123)(78,86,116,124)(79,87,113,121)(80,88,114,122)(81,89,103,111)(82,90,104,112)(83,91,101,109)(84,92,102,110), (1,13,9,41)(2,14,10,42)(3,15,11,43)(4,16,12,44)(5,48,38,20)(6,45,39,17)(7,46,40,18)(8,47,37,19)(21,53,49,25)(22,54,50,26)(23,55,51,27)(24,56,52,28)(29,61,57,69)(30,62,58,70)(31,63,59,71)(32,64,60,72)(33,89,127,121)(34,90,128,122)(35,91,125,123)(36,92,126,124)(65,85,100,109)(66,86,97,110)(67,87,98,111)(68,88,99,112)(73,79,105,103)(74,80,106,104)(75,77,107,101)(76,78,108,102)(81,119,113,95)(82,120,114,96)(83,117,115,93)(84,118,116,94), (1,77,9,101)(2,102,10,78)(3,79,11,103)(4,104,12,80)(5,97,38,66)(6,67,39,98)(7,99,40,68)(8,65,37,100)(13,105,41,73)(14,74,42,106)(15,107,43,75)(16,76,44,108)(17,109,45,85)(18,86,46,110)(19,111,47,87)(20,88,48,112)(21,81,49,113)(22,114,50,82)(23,83,51,115)(24,116,52,84)(25,93,53,117)(26,118,54,94)(27,95,55,119)(28,120,56,96)(29,89,57,121)(30,122,58,90)(31,91,59,123)(32,124,60,92)(33,63,127,71)(34,72,128,64)(35,61,125,69)(36,70,126,62) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,59,51,45),(2,60,52,46),(3,57,49,47),(4,58,50,48),(5,44,62,54),(6,41,63,55),(7,42,64,56),(8,43,61,53),(9,31,23,17),(10,32,24,18),(11,29,21,19),(12,30,22,20),(13,71,27,39),(14,72,28,40),(15,69,25,37),(16,70,26,38),(33,105,98,95),(34,106,99,96),(35,107,100,93),(36,108,97,94),(65,117,125,75),(66,118,126,76),(67,119,127,73),(68,120,128,74),(77,85,115,123),(78,86,116,124),(79,87,113,121),(80,88,114,122),(81,89,103,111),(82,90,104,112),(83,91,101,109),(84,92,102,110)], [(1,13,9,41),(2,14,10,42),(3,15,11,43),(4,16,12,44),(5,48,38,20),(6,45,39,17),(7,46,40,18),(8,47,37,19),(21,53,49,25),(22,54,50,26),(23,55,51,27),(24,56,52,28),(29,61,57,69),(30,62,58,70),(31,63,59,71),(32,64,60,72),(33,89,127,121),(34,90,128,122),(35,91,125,123),(36,92,126,124),(65,85,100,109),(66,86,97,110),(67,87,98,111),(68,88,99,112),(73,79,105,103),(74,80,106,104),(75,77,107,101),(76,78,108,102),(81,119,113,95),(82,120,114,96),(83,117,115,93),(84,118,116,94)], [(1,77,9,101),(2,102,10,78),(3,79,11,103),(4,104,12,80),(5,97,38,66),(6,67,39,98),(7,99,40,68),(8,65,37,100),(13,105,41,73),(14,74,42,106),(15,107,43,75),(16,76,44,108),(17,109,45,85),(18,86,46,110),(19,111,47,87),(20,88,48,112),(21,81,49,113),(22,114,50,82),(23,83,51,115),(24,116,52,84),(25,93,53,117),(26,118,54,94),(27,95,55,119),(28,120,56,96),(29,89,57,121),(30,122,58,90),(31,91,59,123),(32,124,60,92),(33,63,127,71),(34,72,128,64),(35,61,125,69),(36,70,126,62)]])

44 conjugacy classes

class 1 2A···2G4A···4AB4AC···4AJ
order12···24···44···4
size11···12···28···8

44 irreducible representations

dim111111222
type+++++++-
imageC1C2C2C2C2C2D4Q8C4○D4
kernelC43.15C2C43C428C4C429C4C23.65C23C2×C42.C2C42C42C2×C4
# reps1122824816

Matrix representation of C43.15C2 in GL6(𝔽5)

300000
220000
002000
000300
000002
000030
,
100000
010000
002000
000300
000001
000040
,
300000
220000
003000
000200
000020
000002
,
240000
030000
000300
003000
000003
000030

G:=sub<GL(6,GF(5))| [3,2,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[3,2,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[2,0,0,0,0,0,4,3,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0] >;

C43.15C2 in GAP, Magma, Sage, TeX

C_4^3._{15}C_2
% in TeX

G:=Group("C4^3.15C2");
// GroupNames label

G:=SmallGroup(128,1591);
// by ID

G=gap.SmallGroup(128,1591);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,456,758,184,2019,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*c^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*c>;
// generators/relations

׿
×
𝔽